Centralizers and Normalizers (D+F 2.2)

let G be a group and A = G a subset (not necessarily a subgroup.

Def: The centraliter of A, denoted
$$C_G(A)$$
, is the set of
elements of G that commute w/ all elements of A.
i.e. $C_G(A) := \{g \in G \mid gag^{-1} = a \ \forall a \in A \}$.

(Note that
$$gag^{-1} = a \iff ga = ag$$
.)

Claim:
$$C_{G}(A) \leq G_{I}$$

If
$$x, y \in C_{q}(A)$$
, we want to show $xy^{-1} \in C_{q}(A)$ as well?

Let
$$a \in A$$
. Then $ya = ay \implies a = y^{-1}ay$
 $\implies xax^{-1} = x(y^{-1}ay)x^{-1}$
 $\implies a = (xy^{-1})a(yx^{-1}) = (xy^{-1})a(xy^{-1})^{-1}$

Thus, $\pi y^{-1} \in C_{G}(A)$, so it's a subgroup. \Box

 E_{x} ; i) $C_{G}(1) = G$, since everything commutes w/ the identity.

2.) From the homework, if
$$n = 2k$$
,
then $C_{D_{2n}}(r^k) = D_{2n}$ and $C_{D_{2n}}(D_{2n}) = \{1, r^k\}$.

The subgroup $C_G(G)$ is the set of elements that commute with every element of G, and is denoted $\overline{7}(G)$. It is called the <u>center</u> of G.

Note that $Z(G) = G \iff G$ is abelian.

Ex: From the homework, if $n \ge 3$ then • If h = 2k, then $Z(D_{2n}) = \{l, r^k\}$ • (f h is odd, $Z(D_{2n}) = l$.

Def: Define $gAg^{-1} = \xi gag^{-1} | a \in A_3^2$. The <u>hormalizer</u> of A in G is the set $N_G(A) = \xi g \in G | gAg^{-1} = A_3^2$

(It will be clear soon why it's called the normalizer and why it's useful.)

The normalizer is also a subgroup of G (proof is nearly identical to the one for the centralizer).

Notice: Being in the normalizer of a pt is weaker than
being in its centralizer. That is,
If
$$g \in C_G(A)$$
 then $gag^{-1} = a \quad \forall \quad a \in A$ so
 $gAg^{-1} = A$. Thus $g \in N_G(A) \implies C_G(A) \leq N_G(A)$.
Ex: Consider $S_3 = \{1, (12), (13), (23), (123), (132)\}$
Let $A = \{1, (12)\}$.
What is $C_{s_s}(A)$? Well, by Lagrange's Theorem (see HW),
 $|C_{s_s}(A)|| = 2 \text{ or } 6$, but $(12)(13) \neq (13)(12)$
So $|C_{s_s}(A)| = 2 \text{ or } 6$, but $(12)(13) \neq (13)(12)$
(They schold i different places), so $C_{s_s}(A) = A$.
For the normalizer of A , $\sigma \in N_{s_s}(A)$ iff

$$(=) \quad \sigma(12)\sigma^{-1} = (12). \quad \text{But this would imply } \sigma \in (S_3(A)),$$
so $N_{S_3}(A) = (S_3(A)).$

EX: Considur D₈ again. Let $A = \{1, r, r^2, r^3\}$.

By Lagrange's Theorem, since
$$sr \neq rs$$
, $|C_{D_g}(A)| = 4$,
so $C_{D_g}(A) = A$.

However, this means $N_{D_g}(A) = C_{D_g}(A)$ or D_g . Sr'S = S²r⁻ⁱ = r⁻ⁱ $\in A_j$, so $S \in N_{D_g}(A)$, so $N_{D_g}(A) = D_g$.